Rabu, 09 Desember 2009

Menuju Ke Abstrak

Pemahaman akan pengertian abstrak sepertinya masih dianggap sebagai suatu yang sulit bahkan tak teraplikasi. Bagi orang di pinggir jalan, boleh jadi menganggap orang yang belajar matematika abstrak sebagai orang sinting.

Saatnya kita harus menguak apa yang dimaksud abstrak dalam matematika? Apakah suatu yang tidak real? Hanyakah ngoyoworo ataukah hanyakah khayalan orang? Apakah seperti aljabar abstrak itu suatu yang mengada-ada saja ataukah memang harus menuju ke situ?

Berikut semoga bisa memberi gambaran akan pemahaman tersebut. Sebagai langkah-langkah sebelum ke abstrak, kita berkecimpung dengan aritmatika yang di dalamnya ada proses seperti penjumlahan, perkalian, dan ada penggunaan variabel. Pengenalan abstrak di SMA biasanya dimulai dengan pelajaran induksi matematik dimana harus membuktikan keteraturan sampai tak hingga dengan membuktikan implikasi Pk--->Pk+1 dan membuktikan P0 benar.
Waktu kita melangkah dari perhitungan dasar ke penggunaan variabel, kita meluaskan orientasi kepada cakupan perhitungan yang lebih luas. Kita bisa mengoperasikan bilangan-bilangan tanpa mengetahui berapa bilangannya, cukup dengan variabel. Nah ini, dari aritmatika menuju abstrak yang banyak membuat kepala para mahasiswa sakit, sebenarnya juga merupakan perluasan orientasi menuju semakin beragam dan semakin luas. Kita mulai dengan mempelajari sekelompok obyek, lalu interaksi antar obyek, yang lalu kita namakan operasi biner, mempelajari keteraturannya, mempelajari ciri-cirinya, lalu memformulasikannya menjadi aksioma-aksioma.

Contoh di bawah mungkin bisa menjadi bayangan akan langkah tersebut, kita mulai dengan PENGANTAR TEORI BILANGAN.

Subgroup bilangan bulat
Kita perhatikan perhatikan himpunan bilangan bulat (integer), yaitu {...,-3,-2,-1,0,1,2,3,...} yang lalu biasa dinotasikan dengan Z. < zahl="bilangan">
Diberikan suatu himpunan bagian dari Z, katakanlah himpunan S. Himpunan S disebut subgroup dari Z jika memenuhi :
(i) x+y anggota dari S untuk setiap x dan y anggota dari S,
(ii) 0 anggota dari S,
(iii) -x anggota dari S untuk setiap x anggota dari S.

<>

Suatu himpunan bagian tak kosong S dari Z adalah subgroup jika dan hanya jika x - y anggota dari S untuk setiap x dan y anggota dari S.
Bukti :
S subgroup dari Z ==> x - y anggota S untuk setiap x,y anggota S
Karena y anggota dari S, maka -y anggota dari S
Karena x dan -y anggota dari S, maka x+(-y)=x-y anggota dari S
x - y anggota S untuk setiap x,y anggota S ==> S subgroup dari Z
Karena S tak kososng maka ada anggotanya, misalkan x anggota dari S, maka x-x=0 adalah anggota dari S , jadi 0 dan x anggota dari S sehingga 0-x=-x anggota dari S , lalu jika x dan y anggota dari S, sehingga -y anggota dari S, lalu x-(-y)=x+y anggota dari S . Terbukti.

Taruhlah m adalah bilangan bulat, dan kita buat notasi mZ={mn|n anggota Z}. Maka mZ adalah subgroup dari Z.

Teorema I
Jika S adalah saubgroup dari Z, maka S = mZ untuk suatu bilngan bulat tak negatif m. <>
Bukti :
Kita buat dua kemungkinan, yaitu :
pertama --> jika S = {0}, maka dapat ditulis S=mZ dengan m=0.
kedua --> jika S tidak sama dengan {0}, atau S memuat bilangan bulat tak nol. Maka tentunya S memuat bilangan bulat positif <>. Kita ambil misalnya m adalah bilangan bulat positif yang terkecil di S. Lalu suatu bilangan bulat positif n di S akan dapat ditulis dalam bentuk n=qm+r, dimana q adalah suatu bilangan bulat positif dan r suatu bilangan bulat yang memenuhi 0<=r. Dengan demikian r juga anggota S, karena r=n-qm. Karena diasumsikan m adalah yang terkecil, maka haruslah r=0. Jadi n=qm, dengan demikian n anggota mZ, yang berarti S=mZ. Terbukti.

Teorema tersebut mengatakan bahwa kalau sebuah himpunan yang anggotanya bilangan-bilangan bulat serta memenuhi tiga aksioma untuk subgroup di atas, maka tentulah anggota-anggota himpunan tersebut berbentuk kelipatan dari suatu bilangan bulat positif.

Faktor Persekutuan Terbesar
Definisi :
Taruhlah a1,a2,...,ar adalah bilangan bulat, yang tidak semuanya nol. Faktor persekutuan dari a1,a2,...,ar adalah suatu bilangan bulat yang membagi habis setiap a1,a2,...,ar. Faktor persekutuan terbesar dari a1,a2,...,ar adalah bilangan bulat positif terbesar yang membagi habis setiap a1,a2,...,ar. Faktor persekutuan terbesar dari a1,a2,...,ar dinaotasikan dengan (a1,a2,...,ar).

Teorema II
Taruhlah a1,a2,...,ar adalah bilangan bulat, yang tidak semuanya nol. Maka ada bilangan-bilangan bulat sebutlah u1,u2,...,ur sedemikian hingga
(a1,a2,...,ar)=a1u1 + a2u2 + . . . +arur
dimana (a1,a2,...,ar) adalah Faktor Persekutuan Terbesar dari a1,a2,...,ar.
Bukti :
Pembuktian teorema ini, pertama kita harus menunjukkan bahwa suatu himpunan S yang anggota-anggotanya berbentuk n1a1 + n2a2 + . . . +nrar dimana n1, n2,..., nr bilangan-bilangan bulat merupakan subgroup dari Z dengan menunjukkan terpenuhinya 3 aksioma di atas. Lalu setelah terbukti, maka karena
S subgroup Z, akan berbentuk mZ. Dengan kata lain bahwa setiap anggota S merupakan kelipatan dari m. Dengan demikian m adalah faktor persekutuan dari a1,a2,...,ar. Karena FPB adalah faktor persekutuan, maka otomatis ada u1,u2,...,ur sehingga (a1,a2,...,ar)=a1u1 + a2u2 + . . . +arur. Terbukti.

Kiranya, ini bisa menjadi gambaran bahwa yang namanya abstrak bukan suatu yang tidak aplikatif, melainkan adalah perluasan orientasi kita dalam memandang. Memang terlihat lebih sulit, karena kita mencoba menengok yang disebalik dari yang nampak.

Semoga bermanfaat bagi semuanya.

http://www.forumsains.com/index.php?page=menuju-ke-abstrak

Tidak ada komentar:

Posting Komentar